- 948. Carcinogenic Nitrogen Compounds. Part XIII.* Benzacridines, Benzocarbazoles, and Related Compounds bearing Ethyl and Propyl Groups.
 - By Ng. Ph. Buu-Hoï, René Royer, Bernard Eckert, and Pierre Jacquignon.

In continuation of earlier work (Buu-Hoï, J., 1946, 792; 1949, 670; 1950, 1146), several benzacridines, dibenzacridines, benzocarbazoles, and benzophenarsazines bearing ethyl or propyl groups have been prepared for biological examination as potential carcinogens.

In the 1:2-benzanthracene and 3:4-benzophenanthrene series, several hydrocarbons bearing ethyl or propyl groups are active carcinogens (Badger, Cook, Hewett, Kennaway, and Martin, *Proc. Roy. Soc.*, 1942, B, 131, 170; Shear and Leiter, J. Nat. Cancer Inst., 1940, 1, 103) or inhibitors of tumour growth (Badger, Elson, Haddow, Hewett, and Robinson, Proc. Roy. Soc., 1942, B, 130, 255); in some cases, the biological activity of the ethyl or isopropyl compounds surpasses that of the corresponding methyl compounds. A large number of benzacridines, dibenzacridines, benzocarbazoles, dibenzocarbazoles, and benzophenarsazines bearing ethyl, n-propyl, or isopropyl radicals has therefore been prepared by standard methods.

3"-Ethyl-1: 2-6: 7-dibenzacridine is moderately carcinogenic on the skin in mice and 7-ethyl-5-methyl-1: 2-benzacridine fairly active.

EXPERIMENTAL (with M. HUBERT-HABART)

Preparation of 6-Ethyl-2-naphthol.—6-Acetyl-2-methoxynaphthalene (Haworth and Sheldrick, J., 1934, 865) was reduced by the Clemmensen method, and the product (38 g.) demethylated with pyridine hydrochloride. Reaction of 6-ethyl-2-naphthol, aromatic aldehydes, and hydrogen chloride in acetic acid gave the following 3:4-6:7-dibenzoxanthens (Claisen, Annalen, 1887, 237, 265): 5-p-chlorophenyl-2':3"-diethyl- (from p-chlorobenzaldehyde), long, shiny needles (from acetic acid), m. p. 202—203° (Found: C, 82·6; H, 5·8. Calc. for $C_{31}H_{25}OCl$: C, 82·9; H, 5·6%); 5-(3:4-dichlorophenyl)-2':3"-diethyl-3:4-6:7-dibenzoxanthen (from 3:4-dichlorobenzaldehyde), shiny leaflets (from acetic acid), m. p. 218° (Found: C, 77·1; H, 5·0. Calc. for $C_{31}H_{24}OCl_2$: C, 77·0; H, 4·9%).

2'-Ethyl-3: 4-benzocarbazole.—6-Ethyl-2-naphthol (5 g.) and phenylhydrazine hydrogen sulphite (50 c.c. of a saturated aqueous solution) were refluxed for 48 hours; the carbazole, in benzene, was washed with dilute hydrochloric acid, and then vacuum-distilled (b. p. 300—310°/24 mm.); it formed needles (from methanol) (1 g.), m. p. 131° (Found: C, 88·0; H, 6·0. C₁₈H₁₅N requires C, 88·2; H, 6·1%), giving a violet-red picrate.

2'-isoPropyl-1:2-5:6-dibenzocarbazole.—7-isoPropyl-1-tetralone β -naphthylhydrazone, heated for 5 minutes with a saturated solution of hydrogen chloride in acetic acid, gave 3:4-di-hydro-2'-isopropyl-1:2-5:6-dibenzocarbazole (95%), needles (from benzene), m. p. 194°, which

formed a deep red sulphuric acid solution (Found: N, $4\cdot3$. $C_{23}H_{21}N$ requires N, $4\cdot5\%$); a solution of this compound (2 g.) in xylene, refluxed for 2 hours with chloranil (2·4 g.), yielded 2'-isopropyl-1: 2-5: 6-dibenzocarbazole, as shiny leaflets (from benzene), m. p. 203° (Found: C, 89·0; H, 6·2. $C_{23}H_{19}N$ requires C, 89·3; H, 6·1%), giving a deep red sulphuric acid solution, and a deep violet picrate. The Grignard derivative of this carbazole with methyl sulphate gave 9-methyl-2'-isopropyl-1: 2-5: 6-dibenzocarbazole, shiny leaflets (from methanol), m. p. 173° (Found: C, 89·0; H, 6·4. $C_{24}H_{21}N$ requires C, 89·2; H, 6·5%).

Amines derived from Ethylanilines.—p-Ethylaniline (15 g.) [toluene-p-sulphonyl derivative, long silky needles (from ligroin), m. p. 91° (Found: N, 5·0. $C_{15}H_{17}O_2NS$ requires N, 5·1%)], and α -naphthylamine (17 g.) were refluxed for 24 hours with iodine (0·5 g.); N-p-ethylphenyl- α -naphthylamine (12 g.) formed a pale yellow, viscous oil, b. p. 260°/21 mm. (Found: C, 87·2; H, 6·8. $C_{18}H_{17}N$ requires C, 87·4; H, 6·9%). Similarly prepared were: N-p-ethylphenyl- β -

(a) Substituted 1: 2-benzacridines.

Substituent	М. р.	Formula	Found	l, %:	Reqd.	, % :
7-Ethyl-5-methyl	110°	$C_{20}H_{17}N$	88.4	6.5	88.6	6.3
6-Ethyl-9-methyl •	82	$C_{20}^{10}H_{17}^{11}N$	88.3	6.3	88.6	6.3
$5: 6$ -Diethyl-9-methyl b	86	$C_{22}H_{21}N$	87.9	6.8	88.3	7.0
8-Chloro-9-methyl-5-isopropyl	159	$C_{21}H_{18}NCl$	78.7	5.8	78.9	5.6

^a The picrate formed from ethanol orange-brown needles, m.p. 144° . ^b The picrate formed from ethanol orange needles, m. p. 127° [the low m. p. of the two picrates is characteristic of picrates of 1:2-benzacridines bearing an alkyl group in the 9-position (cf. Buu-Hoĭ, J., 1949, 670; 1950, 1146; Senier and Austin, J., 1907, 91, 1240)].

(b) Substituted 3: 4-benzacridines and their derivatives.

			Found, %:	Reqd., %:*
Substituent	M. p. (or b. p./mm.)	Formula	С Н	C H
7-Ethyl-5-methyl		$C_{20}H_{17}N$		
Picrate	236 (dec. >210)	$C_{26}H_{20}O_{7}N_{4}$	11.5	11.2
Hydrobromide	219	$C_{20}H_{18}NBr$	67.8 5.2	68.2 5.1
5: 7-Diethyl	300/18	$C_{21}H_{19}N$	88.5 6.9	88.4 6.7
Picrate	236 (dec. > 205)	$C_{27}H_{22}O_7N_4$	10.6	10.9
Hydrobromide	218—220	$C_{21}H_{20}NBr$	68.5 5.5	68.9 5.5
6 -Ethyl-9-methyl	140	$C_{20}^{11}H_{17}^{10}N$	88.3 6.5	88.6 6.3
Picrate	265 (dec. > 255)	$C_{26}H_{20}O_{7}N_{4}$	11.5	11.2
9-Methyl-6-n-propyl	` 117	$C_{21}H_{12}N$	88.2 6.5	88.4 6.7
Picrate	257 (dec. > 240)	$C_{27}H_{22}O_{7}N_{4}$	11.2	10.9
9-Ethyl-6- <i>n</i> -propyl	93	$C_{22}H_{21}N$	88.0 7.3	88.3 7.0
Picrate	$240 \; (sec. > 225)$	$C_{28}H_{24}O_{7}N_{4}$	10.4	10.6
6-Ethyl-5: 9-dimethyl	` 134	$C_{21}H_{19}N$	88.2 6.6	88.4 6.7
Picrate	217	$C_{27}H_{22}O_{7}N_{4}$	10.6	10.9
5:6-Diethyl-9-methyl	135	$C_{22}H_{21}N$	87.9 6.8	88.3 7.0
Picrate	${ m dec.} > 230$	$C_{28}H_{24}O_{7}N_{4}$	10.5	10.6
5- <i>iso</i> Propyl	169	$C_{20}H_{17}N$	88.5 6.1	88.6 6.3
Picrate	238 (dec. > 220)	$C_{26}^{20}H_{20}O_{7}N_{4}$	10.8	11.2
7-Methyl-5-isopropyl	` 156	$C_{21}H_{19}N$	88.1 6.5	88.4 6.7
Picrate	274 (dec. > 260)	C, H, O, N,	10.6	10.9
7-Ethyl-5-isopropyl	` 145	$C_{22}H_{21}N$	88.0 6.9	88.3 7.0
Picrate	$\mathrm{dec.}>252$	$C_{28}^{22}H_{24}^{21}O_{7}N_{4}$	10.8	10.6
9-Methyl-5-isopropyl	144	$C_{21}^{20}H_{19}^{20}N$	88.1 6.8	88.4 6.7
Picrate	200	$C_{27}^{11}H_{22}^{13}O_{7}N_{4}$	10.6	10.9
9-Phenyl-5-isopropyl	131	$C_{26}H_{21}N$	90.7 6.2	89.9 6.1
Picrate	237 - 238	$C_{32}H_{24}O_{7}N_{4}$	9.4	9.7
6 : 7 -Dimethyl-5- <i>iso</i> propyl	183	$C_{22}H_{21}N$	88.5 7.0	88.3 7.0
Picrate	275	$C_{28}H_{24}O_7N_4$	10.9	10.6
8:9-Dimethyl-5-isopropyl	142	$C_{22}H_{21}N$	88.1 7.2	88.3 7.0
Picrate	247 (dec. > 232)	$C_{28}H_{24}O_{7}N_{4}$	10.4	10.6
2'-tertButyl-7-methyl-5-isopropyl	138	$C_{25}H_{27}N$	87.9 8.0	88.0 7.9
Picrate	222	$C_{31}H_{30}O_{7}N_{4}$	9.6	9.8
8-Chloro-9-methyl-5-isopropyl	158	C ₂₁ H ₁₈ NCl	78.6 5.6	78.9 5.6
Picrate	235	$C_{27}H_{21}O_7N_4Cl$	10.0	10.2

^{*} Lone values relate to nitrogen (for picrates).

naphthylamine, shiny prisms (from methanol), m. p. 64° (Found: C, 87·1; H, 7·1%); N-(5-ethyl-2-methylphenyl)- α -naphthylamine, a thick yellow oil, b. p. 263—264°/16 mm. (Found:

[•] The acridines were recrystallised from methanol or ethanol, their picrates from xylene or nitrobenzene, and their hydrobromides from dilute ethanol.

C, 87·1; H, 7·2. $C_{19}H_{19}N$ requires C, 87·4; H, 7·3%); and the β -naphthyl analogue, a viscous yellow oil, b. p. 265—268°/16 mm. (Found: C, 87·3; H, 7·5%).

Amines derived from 6-Ethyl-2-naphthol.—6-Ethyl-N-phenyl-2-naphthylamine (7 g.), prepared similarly, had b. p. 250—255°/16 mm., and formed silky needles (from methanol), m. p. 100° (Found: C, 87·1; H, 7·1. $C_{18}H_{17}N$ requires C, 87·4; H, 6·9%); the p-tolyl analogue formed shiny leaflets (from ethanol), m. p. 101° (Found: C, 87·1; H, 7·1. $C_{19}H_{19}N$ requires C, 87·4; H, 7·3%). 6-n-Propyl-N-phenyl-2-naphthylamine was a pale yellow, viscous oil, b. p. 270—272°/16 mm. (Found: C, 87·2; H, 7·5. $C_{19}H_{19}N$ requires C, 87·4; H, 7·3%), and the p-tolyl analogue silky needles (from light petroleum), m. p. 76—77° (Found: C, 87·0; H, 7·3. $C_{20}H_{21}N$ requires C, 87·3; H, 7·6%).

10-Chloro-8-ethyl-5: 10-dihydro-1: 2-benzophenarsazine.—A solution of N-p-ethylphenyl-β-naphthylamine (3·5 g.) and arsenic trichloride (3 g.) in o-dichlorobenzene (20 c.c.) was refluxed for 3 hours; the solid arsazine obtained on cooling gave silky, orange-yellow needles (4·5 g.), m. p. 241° (decomp. >225°), from nitrobenzene; these gave an orange-red sulphuric acid solution (Found: C, 60·6; H, 4·0. $C_{18}H_{15}NClAs$ requires C, 60·8; H, 4·2%); the isomeric 3'-ethyl compound formed shiny, orange-yellow leaflets (from nitrobenzene), m. p. 220° (decomp. >212°) (Found: C, 60·4; H, 4·1%).

 $10\text{-}Chloro-8\text{-}ethyl-5:10\text{-}dihydro-3:4\text{-}benzophenarsazine.}$ —This compound formed from o-dichlorobenzene silky, golden-yellow prisms, m. p. 210° (decomp. $>\!196^\circ$) (Found: C, $60\cdot5$; H, $4\cdot1\%$), and, when it (1·2 g.) was treated with an ethereal solution of methylmagnesium iodide in excess, yielded 8-ethyl-5:10-dihydro-10-methyl-3:4-benzophenarsazine (1 g.), shiny needles (from ligroin), m. p. 109—110°, giving with sulphuric acid an orange colour (Found: C, $68\cdot0$; H, $5\cdot1$. $C_{19}H_{18}NAs$ requires C, $68\cdot1$; H, $5\cdot4\%$).

10-Chloro-9-ethyl-5: 10-dihydro-6-methyl-1: 2-benzophenarsazine formed from toluene silky, yellow needles, decomposing above 245° (Found: C, 61·4; H, 4·4. C₁₉H₁₇NClAs requires C, 61·7; H, 4·6%); the isomeric 3'-ethyl-8-methyl compound crystallised from nitrobenzene as silky, golden-yellow prisms, m. p. 275° (decomp. >270°) (Found: C, 61·4; H, 4·3%). 10-Chloro-9-ethyl-5: 10-dihydro-6-methyl-3: 4-benzophenarsazine crystallised from toluene as long, silky, lemon-yellow needles, m. p. 205° (decomp. >188°) (Found: C, 61·3; H, 4·4%).

5-Ethylisatin.—To a mixture of chloral hydrate (54 g.) and sodium sulphate (750 g.) in water (800 c.c.), a solution of p-ethylaniline (30 g.) in 10% hydrochloric acid (220 c.c.) and then an aqueous solution of hydroxylamine hydrochloride (60 g.) were added; after a brief boiling, the mixture was cooled, and the precipitated isonitroso-compound collected, dried, and treated with sulphuric acid (360 g.) below 80°. The isatin obtained after decomposition with ice crystallised from methanol as long, silky, orange needles, m. p. 135° (Found: C, 68·4; H, 5·2. $C_{10}H_9O_2N$ requires C, 68·6; H, 5·1%); the indophenazine obtained with o-phenylenediamine formed from ethanol silky, yellow needles, m. p. 227—228° (Found: N, 16·7. $C_{16}H_{13}N_3$ requires N, 17·0%); 5-ethylisatin N'-phenylhydrazone crystallised from ethanol as bright yellow plates, m. p. 200°.

 $3^{''}$ -Ethyl-1: 2-6: 7-dibenzacridine.—A mixture of 6-ethyl-2-naphthol (2 g.) and α -naphthylamine (2 g.) was cautiously treated at 250° with paraformaldehyde (1 g.) in small portions; the acridine was subsequently boiled for 5 minutes, and purified by vacuum-distillation. The picrate, crystallised from nitrobenzene as fine, orange-yellow prisms, m. p. 276—277° (decomp. >240°) (Found: N, 10·0. $C_{23}H_{17}N, C_6H_3O_7N$ requires N, 10·4%); its decomposition with aqueous ammonia yielded the base, fine, pale yellow needles (from ethanol), m. p. 154° (Found: C, 89·6; H, 5·6. $C_{23}H_{17}N$ requires C, 89·9; H, 5·5%).

This work forms part of a cancer research scheme (Professor A. Lacassagne) financially supported by The United States Public Health Service (Federal Security Agency); the authors express gratitude to the authorities concerned.

THE RADIUM INSTITUTE, UNIVERSITY OF PARIS.

[Received, August 11th, 1952.]